Stable gene transfer of CCR5 and CXCR4 siRNAs by sleeping beauty transposon system to confer HIV-1 resistance
نویسندگان
چکیده
BACKGROUND Thus far gene therapy strategies for HIV/AIDS have used either conventional retroviral vectors or lentiviral vectors for gene transfer. Although highly efficient, their use poses a certain degree of risk in terms of viral mediated oncogenesis. Sleeping Beauty (SB) transposon system offers a non-viral method of gene transfer to avoid this possible risk. With respect to conferring HIV resistance, stable knock down of HIV-1 coreceptors CCR5 and CXCR4 by the use of lentiviral vector delivered siRNAs has proved to be a promising strategy to protect cells from HIV-1 infection. In the current studies our aim is to evaluate the utility of SB system for stable gene transfer of CCR5 and CXCR4 siRNA genes to derive HIV resistant cells as a first step towards using this system for gene therapy. RESULTS Two well characterized siRNAs against the HIV-1 coreceptors CCR5 and CXCR4 were chosen based on their previous efficacy for the SB transposon gene delivery. The siRNA transgenes were incorporated individually into a modified SB transfer plasmid containing a FACS sortable red fluorescence protein (RFP) reporter and a drug selectable neomycin resistance gene. Gene transfer was achieved by co-delivery with a construct expressing a hyperactive transposase (HSB5) into the GHOST-R3/X4/R5 cell line, which expresses the major HIV receptor CD4 and and the co-receptors CCR5 and CXCR4. SB constructs expressing CCR5 or CXCR4 siRNAs were also transfected into MAGI-CCR5 or MAGI-CXCR4 cell lines, respectively. Near complete downregulation of CCR5 and CXCR4 surface expression was observed in transfected cells. During viral challenge with X4-tropic (NL4.3) or R5-tropic (BaL) HIV-1 strains, the respective transposed cells showed marked viral resistance. CONCLUSION SB transposon system can be used to deliver siRNA genes for stable gene transfer. The siRNA genes against HIV-1 coreceptors CCR5 and CXCR4 are able to downregulate the respective cell surface proteins and thus confer resistance against viral infection by restricting viral entry. These studies have demonstrated for the first time the utility of the non-viral SB system in conferring stable resistance against HIV infection and paved the way for the use of this system for HIV gene therapy studies.
منابع مشابه
HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector
BACKGROUND: RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) has proved to be a highly effective gene silencing mechanism with great potential for HIV/AIDS gene therapy. Previous work with siRNAs against cellular coreceptors CXCR4 and CCR5 had shown that down regulation of these surface molecules could prevent HIV-1 entry and confer viral resistance. Since monospecific siRNAs...
متن کاملStable gene transfer and expression in human primary T cells by the Sleeping Beauty transposon system.
The Sleeping Beauty (SB) transposon system is a nonviral DNA delivery system in which a transposase directs integration of an SB transposon into TA-dinucleotide sites in the genome. To determine whether the SB transposon system can mediate stable gene expression in human T cells, primary peripheral blood lymphocytes (PBLs) were nucleofected with SB vectors carrying a DsRed reporter gene. Plasmi...
متن کاملCCR5 antagonists: host-targeted antivirals for the treatment of HIV infection.
The human chemokine receptors, CCR5 and CXCR4, are potential host targets for exogenous, small-molecule antagonists for the inhibition of HIV-1 infection. HIV-1 strains can be categorised by co-receptor tropism - their ability to utilise CCR5 (CCR5-tropic), CXCR4 (CXCR4-tropic) or both (dual-tropic) as a co-receptor for entry into susceptible cells. CCR5 may be the more suitable co-receptor tar...
متن کاملInhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5.
Double-stranded RNAs approximately 21 nucleotides long [small interfering RNA (siRNA)] are recognized as powerful reagents to reduce the expression of specific genes. To use them as reagents to protect cells against viral infection, effective methods for introducing siRNAs into primary cells are required. Here, we describe success in constructing a lentivirus-based vector to introduce siRNAs ag...
متن کاملEngineering HIV-Resistant Human CD4+ T Cells with CXCR4-Specific Zinc-Finger Nucleases
HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5) virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AIDS Research and Therapy
دوره 5 شماره
صفحات -
تاریخ انتشار 2008